Longest Path Transversals in Claw-Free and $$P_5$$-Free Graphs

Publikation: Konference artikel i Proceeding eller bog/rapport kapitelKonferencebidrag i proceedingsForskningpeer review

Abstract

For a connected graph G, the longest path transversal number of G, denoted by lpt(G), is the minimum cardinality of a set of vertices that intersects all longest paths in G. It is an open problem whether any graph admits a longest path transversal of constant size. This question remains open even when restricted to claw-free graphs and P5-free graphs. In this work, we investigate these two graph classes. We show that, given a connected graph G, lpt(G)=1 if G is a (P5,H)-free graph, when H is a triangle, a paw, or a diamond. We also provide a complete characterization of the graphs H on at most five vertices for which for any (claw, H)-free graph G it holds that lpt(G)=1. Moreover, in each of these cases, we present a polynomial-time algorithm which finds a vertex in G that belongs to all its longest paths.
OriginalsprogEngelsk
TitelAlgorithms and Complexity
Antal sider15
Vol/bind15679
ForlagSpringer
Publikationsdato18 maj 2025
UdgaveCICA 2025
Sider310-325
ISBN (Elektronisk)978-3-031-92932-8
DOI
StatusUdgivet - 18 maj 2025
BegivenhedThe 14th International Conference on Algorithms and Complexity - Rome, Italien
Varighed: 10 jun. 202512 jun. 2025
Konferencens nummer: 14

Konference

KonferenceThe 14th International Conference on Algorithms and Complexity
Nummer14
Land/OmrådeItalien
ByRome
Periode10/06/202512/06/2025
NavnLecture Notes in Computer Science
Vol/bind15679
ISSN0302-9743

Emneord

  • Longest path transversal
  • P5-free graphs
  • claw-free graphs

Fingeraftryk

Dyk ned i forskningsemnerne om 'Longest Path Transversals in Claw-Free and $$P_5$$-Free Graphs'. Sammen danner de et unikt fingeraftryk.

Citationsformater