Projekter pr. år
Abstract
For a connected graph G, the longest path transversal number of G, denoted by lpt(G), is the minimum cardinality of a set of vertices that intersects all longest paths in G. It is an open problem whether any graph admits a longest path transversal of constant size. This question remains open even when restricted to claw-free graphs and P5-free graphs. In this work, we investigate these two graph classes. We show that, given a connected graph G, lpt(G)=1 if G is a (P5,H)-free graph, when H is a triangle, a paw, or a diamond. We also provide a complete characterization of the graphs H on at most five vertices for which for any (claw, H)-free graph G it holds that lpt(G)=1. Moreover, in each of these cases, we present a polynomial-time algorithm which finds a vertex in G that belongs to all its longest paths.
| Originalsprog | Engelsk |
|---|---|
| Titel | Algorithms and Complexity |
| Antal sider | 15 |
| Vol/bind | 15679 |
| Forlag | Springer |
| Publikationsdato | 18 maj 2025 |
| Udgave | CICA 2025 |
| Sider | 310-325 |
| ISBN (Elektronisk) | 978-3-031-92932-8 |
| DOI | |
| Status | Udgivet - 18 maj 2025 |
| Begivenhed | The 14th International Conference on Algorithms and Complexity - Rome, Italien Varighed: 10 jun. 2025 → 12 jun. 2025 Konferencens nummer: 14 |
Konference
| Konference | The 14th International Conference on Algorithms and Complexity |
|---|---|
| Nummer | 14 |
| Land/Område | Italien |
| By | Rome |
| Periode | 10/06/2025 → 12/06/2025 |
| Navn | Lecture Notes in Computer Science |
|---|---|
| Vol/bind | 15679 |
| ISSN | 0302-9743 |
Emneord
- Longest path transversal
- P5-free graphs
- claw-free graphs
Fingeraftryk
Dyk ned i forskningsemnerne om 'Longest Path Transversals in Claw-Free and $$P_5$$-Free Graphs'. Sammen danner de et unikt fingeraftryk.Projekter
- 1 Igangværende
-
Unifying Theories for Graph Modification Problems
Lima, P. T. D. (PI), Husfeldt, T. (CoI) & Nikabadi, A. (CoI)
01/07/2023 → 30/06/2027
Projekter: Projekt › Forskning