Isospectral discrete and quantum graphs with the same flip counts and nodal counts

Jonas Juul, Christopher H Joyner

Publikation: Artikel i tidsskrift og konference artikel i tidsskriftTidsskriftartikelForskningpeer review

Abstract

The existence of non-isomorphic graphs which share the same Laplace spectrum (to be referred to as isospectral graphs) leads naturally to the following question: what additional information is required in order to resolve isospectral graphs? It was suggested by Band, Shapira and Smilansky that this might be achieved by either counting the number of nodal domains or the number of times the eigenfunctions change sign (the so-called flip count) (Band et al 2006 J. Phys. A: Math. Gen. 39 13999–4014; Band and Smilansky 2007 Eur. Phys. J. Spec. Top. 145 171–9). Recent examples of (discrete) isospectral graphs with the same flip count and nodal count have been constructed by Ammann by utilising Godsil–McKay switching (Ammann private communication). Here, we provide a simple alternative mechanism that produces systematic examples of both discrete and quantum isospectral graphs with the same flip and nodal counts.
OriginalsprogEngelsk
TidsskriftJournal of Physics A: Mathematical and Theoretical
Vol/bind51
Udgave nummer24
Antal sider16
DOI
StatusUdgivet - maj 2018
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Isospectral discrete and quantum graphs with the same flip counts and nodal counts'. Sammen danner de et unikt fingeraftryk.

Citationsformater