Improving Machine Translation Quality Prediction with Syntactic Tree Kernels

Publikation: Konference artikel i Proceeding eller bog/rapport kapitelKonferencebidrag i proceedingsForskningpeer review

Abstract

We investigate the problem of predicting the quality of a given Machine Translation (MT) output segment as a binary classification task. In a study with four different data sets in two text genres and two language pairs, we show that the performance of a Support Vector Machine (SVM) classifier can be improved by extending the feature set with implicitly defined syntactic features in the form of tree kernels over syntactic parse trees. Moreover, we demonstrate that syntax tree kernels achieve surprisingly high performance levels even without additional features, which makes them suitable as a low-effort initial building block for an MT quality estimation system.
OriginalsprogEngelsk
TitelProceedings of the 15th International Conference of the European Association for Machine Translation
Publikationsdato31 maj 2011
StatusUdgivet - 31 maj 2011
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Improving Machine Translation Quality Prediction with Syntactic Tree Kernels'. Sammen danner de et unikt fingeraftryk.

Citationsformater