Features for Exploiting Black-Box Optimization Problem Structure.

Kevin Tierney, Yuri Malitsky, Tinus Abell

    Publikation: Konference artikel i Proceeding eller bog/rapport kapitelBidrag til bog/antologiForskningpeer review

    Abstract

    Black-box optimization (BBO) problems arise in numerous
    scientic and engineering applications and are characterized by compu-
    tationally intensive objective functions, which severely limit the number
    of evaluations that can be performed. We present a robust set of features
    that analyze the tness landscape of BBO problems and show how an
    algorithm portfolio approach can exploit these general, problem indepen-
    dent features and outperform the utilization of any single minimization
    search strategy. We test our methodology on data from the GECCO
    Workshop on BBO Benchmarking 2012, which contains 21 state-of-the-
    art solvers run on 24 well-established functions.
    OriginalsprogEngelsk
    TitelLearning and Intelligent Optimization
    ForlagSpringer VS
    Publikationsdatojan. 2013
    Sider30-36
    ISBN (Trykt)978-3-642-44972-7
    DOI
    StatusUdgivet - jan. 2013
    Begivenhed Learning and Intelligent OptimizatioN Conference 2013 - Episcopate Museum Catania, Catania, Italien
    Varighed: 7 jan. 201311 jan. 2013
    https://link.springer.com/book/10.1007/978-3-642-44973-4

    Konference

    Konference Learning and Intelligent OptimizatioN Conference 2013
    LokationEpiscopate Museum Catania
    Land/OmrådeItalien
    ByCatania
    Periode07/01/201311/01/2013
    AndetEdited by Giuseppe Nicosia and Panos Pardalos
    Internetadresse
    NavnLecture Notes in Computer Science
    ISSN0302-9743

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'Features for Exploiting Black-Box Optimization Problem Structure.'. Sammen danner de et unikt fingeraftryk.

    Citationsformater