Feature Weight Optimization for Discourse-Level SMT

Sara Stymne, Christian Hardmeier, Jörg Tiedemann, Joakim Nivre

Publikation: Konference artikel i Proceeding eller bog/rapport kapitelKonferencebidrag i proceedingsForskningpeer review

Abstract

We present an approach to feature weight optimization for document-level decoding. This is an essential task for enabling future development of discourse-level statistical machine translation, as it allows easy integration of discourse features in the decoding process. We extend the framework of sentence-level feature weight optimization to the document-level. We show experimentally that we can get competitive and relatively stable results when using a standard set of features, and that this framework also allows us to optimize document-level features, which can be used to model discourse phenomena.
OriginalsprogEngelsk
TitelProceedings of the Workshop on Discourse in Machine Translation
Publikationsdato31 aug. 2013
StatusUdgivet - 31 aug. 2013
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Feature Weight Optimization for Discourse-Level SMT'. Sammen danner de et unikt fingeraftryk.

Citationsformater