Fault-tolerant gait learning and morphology optimization of a polymorphic walking robot

David Johan Christensen, Ulrik Pagh Schultz, Kasper Støy

Publikation: Artikel i tidsskrift og konference artikel i tidsskriftTidsskriftartikelForskningpeer review

Abstract

This paper presents experiments with a morphology-independent, life-long strategy for online learning of locomotion gaits. The experimental platform is a quadruped robot assembled from the LocoKit modular robotic construction kit. The learning strategy applies a stochastic optimization algorithm to optimize eight open parameters of a central pattern generator based gait implementation. We observe that the strategy converges in roughly ten minutes to gaits of similar or higher velocity than a manually designed gait and that the strategy readapts in the event of failed actuators. We also optimize offline the reachable space of a foot based on a reference design but finds that the reality gap hardens the successfully transference to the physical robot. To address this limitation, in future work we plan to study co-learning of morphological and control parameters directly on physical robots.
OriginalsprogEngelsk
TidsskriftEvolving Systems
Vol/bind5
Udgave nummer1
Sider (fra-til)21
Antal sider32
ISSN1868-6478
StatusUdgivet - 2014

Emneord

  • Online Learning
  • Locomotion
  • Modular Robots
  • Reconfigurable Robots
  • Fault-Tolerance
  • Central Pattern Generators
  • Morphology Optimization

Fingeraftryk

Dyk ned i forskningsemnerne om 'Fault-tolerant gait learning and morphology optimization of a polymorphic walking robot'. Sammen danner de et unikt fingeraftryk.

Citationsformater