Abstract
We present a fast variational Bayesian algorithm for performing non-negative matrix factorisation and tri-factorisation. We show that our approach achieves faster convergence per iteration and timestep (wall-clock) than Gibbs sampling and non-probabilistic approaches, and do not require additional samples to estimate the posterior. We show that in particular for matrix tri-factorisation convergence is difficult, but our variational Bayesian approach offers a fast solution, allowing the tri-factorisation approach to be used more effectively.
Originalsprog | Engelsk |
---|---|
Publikationsdato | 9 dec. 2016 |
Status | Udgivet - 9 dec. 2016 |
Begivenhed | NIPS 2016: Advances in Approximate Bayesian Inference Workshop - Room 112, Centre Convencions Internacional Barcelona, Barcelona, Spanien Varighed: 9 dec. 2016 → 9 dec. 2016 http://approximateinference.org |
Workshop
Workshop | NIPS 2016 |
---|---|
Lokation | Room 112, Centre Convencions Internacional Barcelona |
Land/Område | Spanien |
By | Barcelona |
Periode | 09/12/2016 → 09/12/2016 |
Internetadresse |