Evolving HyperNetworks for Game-Playing Agents

Christain Carvelli, Djordje Grbic, Sebastian Risi

Publikation: Konference artikel i Proceeding eller bog/rapport kapitelKonferencebidrag i proceedingsForskningpeer review

Abstract

This work investigates the evolution of indirectly-encoded neural networks through a hypernetwork approach. We find that for some Atari games, a hypernetwork with over 14 times fewer parameters, can compete or even outperform directly-encoded policy networks. While hypernetworks perform worse than directly encoded networks in the game Frostbite, in the game Gravitar, the approach reaches a higher score than any other evolutionary method and outperforms complicated deep reinforcement learning setups such as Rainbow.
OriginalsprogEngelsk
TitelGECCO '20: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion
Antal sider2
ForlagAssociation for Computing Machinery
Publikationsdato8 jul. 2020
Sider71-72
ISBN (Trykt)9781450371278
DOI
StatusUdgivet - 8 jul. 2020
BegivenhedGECCO 2020: The Genetic and Evolutionary Computation Conference - online, Cancun, Mexico
Varighed: 8 jul. 202012 jul. 2020
https://gecco-2020.sigevo.org/index.html/HomePage

Konference

KonferenceGECCO 2020
Lokationonline
Land/OmrådeMexico
ByCancun
Periode08/07/202012/07/2020
Internetadresse

Emneord

  • Machine learning
  • Evolutionary algorithms
  • Artificial intelligence
  • Hypernetworks
  • Game-playing agents

Fingeraftryk

Dyk ned i forskningsemnerne om 'Evolving HyperNetworks for Game-Playing Agents'. Sammen danner de et unikt fingeraftryk.

Citationsformater