Dynamic Smooth Compressed Quadtrees.

Ivor van der Hoog, Elena Khramtcova, Maarten Löffler

Publikation: Konference artikel i Proceeding eller bog/rapport kapitelKonferencebidrag i proceedingsForskningpeer review

Abstract

We introduce dynamic smooth (a.k.a. balanced) compressed quadtrees with worst-case constant time updates in constant dimensions. We distinguish two versions of the problem. First, we show that quadtrees as a space-division data structure can be made smooth and dynamic subject to split and merge operations on the quadtree cells. Second, we show that quadtrees used to store a set of points in Rd can be made smooth and dynamic subject to insertions and deletions of points. The second version uses the first but must additionally deal with compression and alignment of quadtree components. In both cases our updates take 2O(dlogd) time, except for the point location part in the second version which has a lower bound of Ω(logn); but if a pointer (finger) to the correct quadtree cell is given, the rest of the updates take worst-case constant time. Our result implies that several classic and recent results (ranging from ray tracing to planar point location) in computational geometry which use quadtrees can deal with arbitrary point sets on a real RAM pointer machine.
OriginalsprogEngelsk
Titel34th International Symposium on Computational Geometry (SoCG 2018)
Antal sider15
ForlagSchloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH
Publikationsdato2018
Sider1-15
ISBN (Trykt)978-3-95977-066-8
DOI
StatusUdgivet - 2018
Udgivet eksterntJa
NavnLeibniz International Proceedings in Informatics
Vol/bind99
ISSN1868-8969

Fingeraftryk

Dyk ned i forskningsemnerne om 'Dynamic Smooth Compressed Quadtrees.'. Sammen danner de et unikt fingeraftryk.

Citationsformater