Dual-Pivot Quicksort: Optimality, Analysis and Zeros of Associated Lattice Paths

Martin Aumüller, Martin Dietzfelbinger, Clemens Heuberger, Daniel Krenn, Helmut Prodinger

Publikation: Artikel i tidsskrift og konference artikel i tidsskriftTidsskriftartikelForskningpeer review

Abstract

We present an average-case analysis of a variant of dual-pivot quicksort. We show that the algorithmic partitioning strategy used is optimal, that is, it minimizes the expected number of key comparisons. For the analysis, we calculate the expected number of comparisons exactly as well as asymptotically; in particular, we provide exact expressions for the linear, logarithmic and constant terms.

An essential step is the analysis of zeros of lattice paths in a certain probability model. Along the way a combinatorial identity is proved.
OriginalsprogEngelsk
TidsskriftCombinatorics, Probability & Computing
Antal sider34
ISSN0963-5483
DOI
StatusUdgivet - 14 aug. 2018

Fingeraftryk

Dyk ned i forskningsemnerne om 'Dual-Pivot Quicksort: Optimality, Analysis and Zeros of Associated Lattice Paths'. Sammen danner de et unikt fingeraftryk.

Citationsformater