Document-Wide Decoding for Phrase-Based Statistical Machine Translation

Christian Hardmeier, Joakim Nivre, Jörg Tiedemann

Publikation: Konference artikel i Proceeding eller bog/rapport kapitelKonferencebidrag i proceedingsForskningpeer review

Abstract

Independence between sentences is an assumption deeply entrenched in the models and algorithms used for statistical machine translation (SMT), particularly in the popular dynamic programming beam search decoding algorithm. This restriction is an obstacle to research on more sophisticated discourse-level models for SMT. We propose a stochastic local search decoding method for phrase-based SMT, which permits free document-wide dependencies in the models. We explore the stability and the search parameters of this method and demonstrate that it can be successfully used to optimise a document-level semantic language model.
OriginalsprogEngelsk
TitelProceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning
Publikationsdato14 jul. 2012
ISBN (Trykt)978-1-937284-43-5
StatusUdgivet - 14 jul. 2012
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Document-Wide Decoding for Phrase-Based Statistical Machine Translation'. Sammen danner de et unikt fingeraftryk.

Citationsformater