Docent: A Document-Level Decoder for Phrase-Based Statistical Machine Translation

Christian Hardmeier, Sara Stymne, Jörg Tiedemann, Joakim Nivre

Publikation: Konference artikel i Proceeding eller bog/rapport kapitelKonferencebidrag i proceedingsForskningpeer review

Abstract

We describe Docent, an open-source decoder for statistical machine translation that breaks with the usual sentence-by-sentence paradigm and translates complete documents as units. By taking translation to the document level, our decoder can handle feature models with arbitrary discourse-wide dependencies and constitutes an essential infrastructure component in the quest for discourse-aware SMT models.
OriginalsprogEngelsk
TitelProceedings of the 51st Annual Meeting of the Association for Computational Linguistics: System Demonstrations
Publikationsdato9 aug. 2013
StatusUdgivet - 9 aug. 2013
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Docent: A Document-Level Decoder for Phrase-Based Statistical Machine Translation'. Sammen danner de et unikt fingeraftryk.

Citationsformater