TY - GEN
T1 - Differentially Private High-Dimensional Approximate Range Counting, Revisited.
AU - Aumüller, Martin
AU - Boninsegna, Fabrizio
AU - Silvestri, Francesco
N1 - DBLP License: DBLP's bibliographic metadata records provided through http://dblp.org/ are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.
PY - 2025
Y1 - 2025
N2 - Locality Sensitive Filters are known for offering a quasi-linear space data structure with rigorous guarantees for the Approximate Near Neighbor search (ANN) problem. Building on Locality Sensitive Filters, we derive a simple data structure for the Approximate Near Neighbor Counting (ANNC) problem under differential privacy (DP). Moreover, we provide a simple analysis leveraging a connection with concomitant statistics and extreme value theory. Our approach produces a simple data structure with a tunable parameter that regulates a trade-off between space-time and utility. Through this trade-off, our data structure achieves the same performance as the recent findings of Andoni et al. (NeurIPS 2023) while offering better utility at the cost of higher space and query time. In addition, we provide a more efficient algorithm under pure ε-DP and elucidate the connection between ANN and differentially private ANNC. As a side result, the paper provides a more compact description and analysis of Locality Sensitive Filters for Fair Near Neighbor Search, improving a previous result in Aumüller et al. (TODS 2022).
AB - Locality Sensitive Filters are known for offering a quasi-linear space data structure with rigorous guarantees for the Approximate Near Neighbor search (ANN) problem. Building on Locality Sensitive Filters, we derive a simple data structure for the Approximate Near Neighbor Counting (ANNC) problem under differential privacy (DP). Moreover, we provide a simple analysis leveraging a connection with concomitant statistics and extreme value theory. Our approach produces a simple data structure with a tunable parameter that regulates a trade-off between space-time and utility. Through this trade-off, our data structure achieves the same performance as the recent findings of Andoni et al. (NeurIPS 2023) while offering better utility at the cost of higher space and query time. In addition, we provide a more efficient algorithm under pure ε-DP and elucidate the connection between ANN and differentially private ANNC. As a side result, the paper provides a more compact description and analysis of Locality Sensitive Filters for Fair Near Neighbor Search, improving a previous result in Aumüller et al. (TODS 2022).
KW - Differential Privacy
KW - Locality Sensitive Filters
KW - Approximate Range Counting
KW - Concominant Statistics
U2 - 10.4230/LIPIcs.FORC.2025.15
DO - 10.4230/LIPIcs.FORC.2025.15
M3 - Article in proceedings
SP - 15:1-15:24
BT - FORC
ER -