Detecting Predatory Behaviour in Online Game Chats

Elin Rut Gudnadottir, Alaina K. Jensen, Yun-Gyung Cheong, Julian Togelius, Byung Chull Bae, Christoffer Holmgård Pedersen

Publikation: Konferencebidrag - EJ publiceret i proceeding eller tidsskriftPaperForskningpeer review

Abstract

This paper describes a machine learning approach to detect
sexually predatory behaviour in the massively multiplayer online game for children, MovieStarPlanet. The goal of this work is to take a chat log as an input and outputs its label as either the predatory category or the non-predatory category. From the raw in-game chat logs provided by MovieStarPlanet, we first prepared three sub datasets via extensive preprocessing. Then, two machine learning algorithms, naive Bayes and Decision Tree, were employed to model the predatory behaviour using different feature sets. Our evaluation has revealed that the proposed
approach achieved high accuracies in detecting predatory chats
OriginalsprogEngelsk
Publikationsdato9 nov. 2013
Antal sider11
StatusUdgivet - 9 nov. 2013
BegivenhedThe 2nd Workshop on Games and NLP: Workshop at the 6th International Conference on Interactive Digital Storytelling - Bahcesehir University Galata Campus (Animation Lab), Istanbul, Tyrkiet
Varighed: 9 nov. 20139 nov. 2013
Konferencens nummer: 6
http://gamesandnarrative.net/icids2013/call-to-participate-in-workshops

Workshop

WorkshopThe 2nd Workshop on Games and NLP
Nummer6
LokationBahcesehir University Galata Campus (Animation Lab)
Land/OmrådeTyrkiet
ByIstanbul
Periode09/11/201309/11/2013
Internetadresse

Emneord

  • NLP
  • predator
  • game
  • text classification

Fingeraftryk

Dyk ned i forskningsemnerne om 'Detecting Predatory Behaviour in Online Game Chats'. Sammen danner de et unikt fingeraftryk.

Citationsformater