TY - JOUR
T1 - Delta-tilde interpretation of standard linear mixed model results
AU - Brockhoff, Per Bruun
AU - Amorim, Isabel de Sousa
AU - Kuznetsova, Alexandra
AU - Bech, Søren
AU - de Lima, Renato Ribeiro
PY - 2016
Y1 - 2016
N2 - We utilize the close link between Cohen's d, the effect size in an ANOVA framework, and the Thurstonian (Signal detection) d-prime to suggest better visualizations and interpretations of standard sensory and consumer data mixed model ANOVA results. The basic and straightforward idea is to interpret effects relative to the residual error and to choose the proper effect size measure. For multi-attribute bar plots of F-statistics this amounts, in balanced settings, to a simple transformation of the bar heights to get them transformed into depicting what can be seen as approximately the average pairwise d-primes between products. For extensions of such multi-attribute bar plots into more complex models, similar transformations are suggested and become more important as the transformation depends on the number of observations within factor levels, and hence makes bar heights better comparable for factors with differences in number of levels. For mixed models, where in general the relevant error terms for the fixed effects are not the pure residual error, it is suggested to base the d-prime-like interpretation on the residual error. The methods are illustrated on a multifactorial sensory profile data set and compared to actual d-prime calculations based on Thurstonian regression modeling through the ordinal package. For more challenging cases we offer a generic "plug-in" implementation of a version of the method as part of the R-package SensMixed. We discuss and clarify the bias mechanisms inherently challenging effect size measure estimates in ANOVA settings.
AB - We utilize the close link between Cohen's d, the effect size in an ANOVA framework, and the Thurstonian (Signal detection) d-prime to suggest better visualizations and interpretations of standard sensory and consumer data mixed model ANOVA results. The basic and straightforward idea is to interpret effects relative to the residual error and to choose the proper effect size measure. For multi-attribute bar plots of F-statistics this amounts, in balanced settings, to a simple transformation of the bar heights to get them transformed into depicting what can be seen as approximately the average pairwise d-primes between products. For extensions of such multi-attribute bar plots into more complex models, similar transformations are suggested and become more important as the transformation depends on the number of observations within factor levels, and hence makes bar heights better comparable for factors with differences in number of levels. For mixed models, where in general the relevant error terms for the fixed effects are not the pure residual error, it is suggested to base the d-prime-like interpretation on the residual error. The methods are illustrated on a multifactorial sensory profile data set and compared to actual d-prime calculations based on Thurstonian regression modeling through the ordinal package. For more challenging cases we offer a generic "plug-in" implementation of a version of the method as part of the R-package SensMixed. We discuss and clarify the bias mechanisms inherently challenging effect size measure estimates in ANOVA settings.
KW - d-Prime
KW - F test
KW - Analysis of variance
KW - Effect size
KW - Visualization
U2 - 10.1016/j.foodqual.2015.11.009
DO - 10.1016/j.foodqual.2015.11.009
M3 - Journal article
SN - 0950-3293
VL - 49
SP - 129
EP - 139
JO - Food Quality and Preference
JF - Food Quality and Preference
ER -