deep-significance - Easy and Meaningful Statistical Significance Testing in the Age of Neural Networks

Publikation: Konferencebidrag - EJ publiceret i proceeding eller tidsskriftPaperForskningpeer review

Abstract

A lot of Machine Learning (ML) and Deep Learning (DL) research is of an empirical nature. Nevertheless, statistical significance testing (SST) is still not widely used. This endangers true progress, as seeming improvements over a baseline might be statistical flukes, leading follow-up research astray while wasting human and computational resources. Here, we provide an easy-to-use package containing different significance tests and utility functions specifically tailored towards research needs and usability.
OriginalsprogEngelsk
Publikationsdato29 apr. 2022
StatusUdgivet - 29 apr. 2022

Emneord

  • Machine Learning
  • Deep Learning
  • Statistical Significance Testing
  • Empirical Research
  • Computational Resources

Fingeraftryk

Dyk ned i forskningsemnerne om 'deep-significance - Easy and Meaningful Statistical Significance Testing in the Age of Neural Networks'. Sammen danner de et unikt fingeraftryk.

Citationsformater