Cross-lingual Multi-task Transfer for Zero-shot Task-oriented Dialog

Rob van der Goot, Marija Stepanovic, Alan Ramponi, Ibrahim Sharaf, Ahmet Üstün, Aizhan Imankulova, Siti Oryza Khairunnisa, Mamoru Komachi, Barbara Plank

Publikation: Konferencebidrag - EJ publiceret i proceeding eller tidsskriftKonferenceabstrakt til konferenceForskningpeer review

Abstract

Digital assistants are becoming an integral part of everyday life. However, commercial digital assistants are only available for a limited set of languages. Because of this, a vast amount of people can not use these devices in their native tongue.
In this work, we focus on two core tasks within the digital assistant pipeline: intent classification and slot detection. Intent classification recovers the goal of the utterance, whereas slot detection identifies important properties regarding this goal. Besides introducing a novel cross-lingual dataset for these tasks, consisting of 11 languages, we evaluate a variety of models: 1)
multilingually pretrained transformer-based models, 2) we supplement these models with auxiliary tasks to evaluate whether multi-task learning can be beneficial, and 3) annotation transfer with neural machine translation.
OriginalsprogEngelsk
Publikationsdato25 sep. 2021
StatusUdgivet - 25 sep. 2021
BegivenhedRESOURCEFUL-2020
: RESOURCEs and representations For Under-resourced Languages and domains
- Gothenburg, Gothenburg, Sverige
Varighed: 25 nov. 2020 → …
https://gu-clasp.github.io/resourceful-2020/

Workshop

WorkshopRESOURCEFUL-2020
LokationGothenburg
Land/OmrådeSverige
ByGothenburg
Periode25/11/2020 → …
Internetadresse

Fingeraftryk

Dyk ned i forskningsemnerne om 'Cross-lingual Multi-task Transfer for Zero-shot Task-oriented Dialog'. Sammen danner de et unikt fingeraftryk.

Citationsformater