Continuous convolutional object tracking

Peer Springstübe, Stefan Heinrich, Stefan Wermter

Publikation: Konference artikel i Proceeding eller bog/rapport kapitelKonferencebidrag i proceedingsForskningpeer review

Abstract

Tracking arbitrary objects is a challenging task in visual computing. A central problem is the need to adapt to the changing appearance of an object, particularly under strong transformation and occlusion. We propose a tracking framework that utilises the strengths of Convolutional Neural Networks (CNNs) to create a robust and adaptive model of the object from training data produced during tracking. An incremental update mechanism provides increased performance and reduces training during tracking, allowing its real-time use.
OriginalsprogEngelsk
TitelProceedings of the 26th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN2018)
Antal sider6
UdgivelsesstedBruges, Belgium
Publikationsdato1 apr. 2018
Sider73-78
StatusUdgivet - 1 apr. 2018
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Continuous convolutional object tracking'. Sammen danner de et unikt fingeraftryk.

Citationsformater