Abstract
In this paper, we argue that the performance of content-based news recommender systems has been hampered by using relatively old and simple matching algorithms. Using more current probabilistic retrieval algorithms results in significant performance boosts. We test our ideas on a test collection that we have made publicly available. We perform both binary and graded evaluation of our algorithms and argue for the need for more graded evaluation of content-based recommender systems.
Originalsprog | Engelsk |
---|---|
Titel | RecSys'07 : Proceedings of the 2007 ACM Conference on Recommender Systems |
Antal sider | 4 |
Publikationsdato | 1 dec. 2007 |
Sider | 141-144 |
ISBN (Trykt) | 9781595937308 |
DOI | |
Status | Udgivet - 1 dec. 2007 |
Udgivet eksternt | Ja |
Begivenhed | RecSys'07: 2007 1st ACM Conference on Recommender Systems - Minneapolis, MN, USA Varighed: 19 okt. 2007 → 20 okt. 2007 |
Konference
Konference | RecSys'07: 2007 1st ACM Conference on Recommender Systems |
---|---|
Land/Område | USA |
By | Minneapolis, MN |
Periode | 19/10/2007 → 20/10/2007 |
Sponsor |