Clustering sensory inputs using NeuroEvolution of augmenting topologies

David Kadish

    Publikation: Konference artikel i Proceeding eller bog/rapport kapitelKonferencebidrag i proceedingsForskningpeer review

    Abstract

    Sorting data into groups and clusters is one of the fundamental tasks of artificially intelligent systems. Classical clustering algorithms rely on heuristic (k-nearest neighbours) or statistical methods (k-means, fuzzy c-means) to derive clusters and these have performed well. Neural networks have also been used in clustering data, but researchers have only recently begun to adopt the strategy of having neural networks directly determine the cluster membership of an input datum. This paper presents a novel strategy, employing NeuroEvolution of Augmenting Topologies to produce an evoltionary neural network capable of directly clustering unlabelled inputs. It establishes the use of cluster validity metrics in a fitness function to train the neural network.
    OriginalsprogEngelsk
    TitelGECCO '18: Proceedings of the Genetic and Evolutionary Computation Conference Companion
    Antal sider162
    ForlagAssociation for Computing Machinery
    Publikationsdatojul. 2018
    Sider161
    DOI
    StatusUdgivet - jul. 2018
    BegivenhedGECCO '18: The Genetic and Evolutionary Computation Conference - Kyoto, Japan, Kyoto, Japan
    Varighed: 15 jul. 201819 jul. 2018
    http://gecco-2018.sigevo.org/index.html/tiki-index.html

    Konference

    KonferenceGECCO '18
    LokationKyoto, Japan
    Land/OmrådeJapan
    ByKyoto
    Periode15/07/201819/07/2018
    Internetadresse

    Emneord

    • Cluster Analysis
    • Neural Networks
    • NeuroEvolution of Augmenting Topologies
    • Unsupervised Learning
    • Cluster Validity Metrics

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'Clustering sensory inputs using NeuroEvolution of augmenting topologies'. Sammen danner de et unikt fingeraftryk.

    Citationsformater