Clustering sensory inputs using NeuroEvolution of augmenting topologies

David Kadish

Publikation: Konference artikel i Proceeding eller bog/rapport kapitelKonferencebidrag i proceedingsForskningpeer review

Abstract

Sorting data into groups and clusters is one of the fundamental tasks of artificially intelligent systems. Classical clustering algorithms rely on heuristic (k-nearest neighbours) or statistical methods (k-means, fuzzy c-means) to derive clusters and these have performed well. Neural networks have also been used in clustering data, but researchers have only recently begun to adopt the strategy of having neural networks directly determine the cluster membership of an input datum. This paper presents a novel strategy, employing NeuroEvolution of Augmenting Topologies to produce an evoltionary neural network capable of directly clustering unlabelled inputs. It establishes the use of cluster validity metrics in a fitness function to train the neural network.
OriginalsprogEngelsk
TitelGECCO '18: Proceedings of the Genetic and Evolutionary Computation Conference Companion
Antal sider162
ForlagAssociation for Computing Machinery
Publikationsdatojul. 2018
Sider161
DOI
StatusUdgivet - jul. 2018
BegivenhedGECCO '18: The Genetic and Evolutionary Computation Conference - Kyoto, Japan, Kyoto, Japan
Varighed: 15 jul. 201819 jul. 2018
http://gecco-2018.sigevo.org/index.html/tiki-index.html

Konference

KonferenceGECCO '18
LokationKyoto, Japan
Land/OmrådeJapan
ByKyoto
Periode15/07/201819/07/2018
Internetadresse

Emneord

  • Cluster Analysis
  • Neural Networks
  • NeuroEvolution of Augmenting Topologies
  • Unsupervised Learning
  • Cluster Validity Metrics

Fingeraftryk

Dyk ned i forskningsemnerne om 'Clustering sensory inputs using NeuroEvolution of augmenting topologies'. Sammen danner de et unikt fingeraftryk.

Citationsformater