Block interpolation: A framework for tight exponential-time counting complexity

Publikation: Artikel i tidsskrift og konference artikel i tidsskriftTidsskriftartikelForskningpeer review

Abstract

We devise a framework for proving tight lower bounds under the counting exponential-time hypothesis #ETH introduced by Dell et al. (2014)
[18]. Our framework allows us to convert classical #P-hardness results for counting problems into tight lower bounds under #ETH, thus ruling out algorithms with running time 2o(n) graphs with n vertices and O(n) edges. As exemplary applications of this framework, we obtain tight lower bounds under #ETH for the evaluation of the zero-one permanent, the matching polynomial, and the Tutte polynomial on all non-easy points except for one line. This remaining line was settled very recently by Brand et al. (2016)
OriginalsprogEngelsk
TidsskriftInformation and Computation
Vol/bind261
Sider (fra-til)265
Antal sider280
ISSN0890-5401
DOI
StatusUdgivet - aug. 2018
Udgivet eksterntJa

Emneord

  • Tutte polynomial
  • Independent set polynomial
  • Matching polynomial
  • Permanent
  • Counting complexity
  • Exponential-time hypothesis

Fingeraftryk

Dyk ned i forskningsemnerne om 'Block interpolation: A framework for tight exponential-time counting complexity'. Sammen danner de et unikt fingeraftryk.

Citationsformater