BERT Busters: Outlier Dimensions That Disrupt Transformers

Olga Kovaleva, Saurabh Kulshreshtha, Anna Rogers, Anna Rumshisky

    Publikation: Konference artikel i Proceeding eller bog/rapport kapitelKonferencebidrag i proceedingsForskningpeer review

    Abstract

    Multiple studies have shown that Transformers are remarkably robust to pruning. Contrary to this received wisdom, we demonstrate that pre-trained Transformer encoders are surprisingly fragile to the removal of a very small number of features in the layer outputs (
    OriginalsprogEngelsk
    TitelFindings of the Association for Computational Linguistics: ACL-IJCNLP 2021
    Antal sider14
    UdgivelsesstedOnline
    ForlagAssociation for Computational Linguistics
    Publikationsdato1 aug. 2021
    Sider3392-3405
    StatusUdgivet - 1 aug. 2021

    Emneord

    • Transformers robustness
    • Pre-trained models
    • Layer outputs
    • Feature pruning
    • Model fragility

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'BERT Busters: Outlier Dimensions That Disrupt Transformers'. Sammen danner de et unikt fingeraftryk.

    Citationsformater