Artificial Evolution for the Detection of Group Identities in Complex Artificial Societies

Corrado Grappiolo, Julian Togelius, Georgios N. Yannakakis

Publikation: Konference artikel i Proceeding eller bog/rapport kapitelKonferencebidrag i proceedingsForskningpeer review

Abstract

This paper aims at detecting the presence of group structures in complex artificial societies by solely observing and analysing the interactions occurring among the artificial agents. Our approach combines: (1) an unsupervised method for clustering interactions into two possible classes, namely in- group and out-group, (2) reinforcement learning for deriving the existing levels of collaboration within the society, and (3) an evolutionary algorithm for the detection of group structures and the assignment of group identities to the agents. Under a case study of static societies — i.e. the agents do not evolve their social preferences — where agents interact with each other by means of the Ultimatum Game, our approach proves to be successful for small-sized social networks independently on the underlying social structure of the society; promising results are also registered for mid-size societies.
OriginalsprogEngelsk
Titel2013 IEEE Symposium on Artificial Life, Proceedings : ALife 2013
Antal sider8
ForlagIEEE Press
Publikationsdato2013
Sider126-133
ISBN (Trykt)9781467358620
DOI
StatusUdgivet - 2013
Begivenhed2013 IEEE Symposium on Artificial Life - Singapore, Singapore
Varighed: 16 apr. 201319 apr. 2013
http://www.ieee.org/conferences_events/conferences/conferencedetails/index.html?Conf_ID=31367

Konference

Konference2013 IEEE Symposium on Artificial Life
Land/OmrådeSingapore
BySingapore
Periode16/04/201319/04/2013
Internetadresse

Fingeraftryk

Dyk ned i forskningsemnerne om 'Artificial Evolution for the Detection of Group Identities in Complex Artificial Societies'. Sammen danner de et unikt fingeraftryk.

Citationsformater