An Innovative Way to Model Twitter Topic-Driven Interactions Using Multiplex Networks

Obaida Hanteer, Luca Rossi

Publikation: Konference artikel i Proceeding eller bog/rapport kapitelKonferencebidrag i proceedingsForskningpeer review

Abstract

We propose a way to model topic-based implicit interactions among Twitter users. Our model relies on grouping Twitter hashtags, in a given context, into themes/topics and then using the multiplex network model to construct a thematic multiplex where each layer corresponds to a topic/theme, and users within a layer are connected if and only if they used the same hashtag. We show, by testing our model on a real-world Twitter dataset, that applying multiplex community detection on the thematic multiplex can reveal new types of communities that were not observed before using the traditional ways of modeling Twitter interactions
OriginalsprogEngelsk
TitelFrontiers in Big Data. Workshop Proceedings of the 13th International AAAI Conference on Web and Social Media
ForlagFrontiers
Publikationsdato6 jun. 2019
DOI
StatusUdgivet - 6 jun. 2019

Emneord

  • Twitter interactions
  • Multiplex network
  • Community detection
  • Thematic analysis
  • Social media modeling

Fingeraftryk

Dyk ned i forskningsemnerne om 'An Innovative Way to Model Twitter Topic-Driven Interactions Using Multiplex Networks'. Sammen danner de et unikt fingeraftryk.

Citationsformater