An Application of Latent Class Random Coefficient Regression

Lars Erichsen, Per B. Brockhoff

Publikation: Artikel i tidsskrift og konference artikel i tidsskriftTidsskriftartikelForskningpeer review

Abstract

In this paper we apply a statistical model combining a random coefficient regression model and a latent class regression model. The EM-algorithm is used for maximum likelihood estimation of the unknown parameters in the model and it is pointed out how this leads to a straightforward handling of a number of different variance or covariance restrictions. Finally, the model is used to analyze how consumers' preferences for eight coffee samples relate to sensory characteristics of the coffees. Within this application the analysis corresponds to a model-based version of the so-called external preference mapping.
OriginalsprogEngelsk
TidsskriftJournal of Applied Mathematics and Decision Sciences
Vol/bind8
Udgave nummer4
Sider (fra-til)201-214
ISSN1173-9126
StatusUdgivet - 2004
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'An Application of Latent Class Random Coefficient Regression'. Sammen danner de et unikt fingeraftryk.

Citationsformater