A Template for Data-Driven Personas: Analyzing 31 Quantitatively Oriented Persona Profiles

Joni Salminen, Kathleen Guan, Lene Nielsen, Soon-Gyo Jung, Bernard J. Jansen

Publikation: Konference artikel i Proceeding eller bog/rapport kapitelKonferencebidrag i proceedingsForskningpeer review

Abstract

Following the proliferation ofpersonified big data and data science algorithms, data-driven user personas (DDPs) are becoming more common in persona design.However, the DDP templates are seemingly diverse and frag-mented, prompting a need for a synthesis of the information included in these personas. Analyzing 31 templates for DDPs, we find that DDPs vary greatly by their information richness, asthe most informative layout hasmore than 300% more information categories than the least informative layout. We also find that graphical complexity and information richness do not necessarily correlate. Fur-thermore, the chosen persona development methodmay carry over to the infor-mation presentation, with quantitative data typically presented as scores, metrics, or tables and qualitative data as text-rich narratives. We did not find one “general template” for DDPs and defining thisis difficultdue to the variety of the outputs of different methods as well as differentinformation needs of the persona users.
OriginalsprogEngelsk
TitelHuman Interface and the Management of Information. Designing Information
RedaktørerS. Yamamoto, H. Mori
Vol/bind12184
ForlagSpringer
Publikationsdato19 jul. 2020
Sider125-144
ISBN (Elektronisk)978-3-030-50020-7
DOI
StatusUdgivet - 19 jul. 2020
Begivenhed International Conference on Human-Computer Interaction - Copenhagen, Copenhagen, Danmark
Varighed: 19 jul. 202024 nov. 2020
Konferencens nummer: 2020
https://link.springer.com/conference/hcii

Konference

Konference International Conference on Human-Computer Interaction
Nummer2020
LokationCopenhagen
Land/OmrådeDanmark
ByCopenhagen
Periode19/07/202024/11/2020
Internetadresse
NavnLecture Notes in Computer Science
Vol/bind12184

Fingeraftryk

Dyk ned i forskningsemnerne om 'A Template for Data-Driven Personas: Analyzing 31 Quantitatively Oriented Persona Profiles'. Sammen danner de et unikt fingeraftryk.

Citationsformater