A study of parameter values for a Mahalanobis distance fuzzy classifier

Peter J Deer, Peter Eklund

Publikation: Artikel i tidsskrift og konference artikel i tidsskriftTidsskriftartikelForskningpeer review

Abstract

A supervised Mahalanobis distance fuzzy classifier (and the related fuzzy c-means clustering algorithm) requires the a priori selection of a weighting parameter called the fuzzy exponent. Guidance in the existing literature on an appropriate value is not definitive. This paper attempts to rigorously justify previous experimental findings on suitable values for this fuzzy exponent, using the criterion that fuzzy set memberships reflect class proportions in the mixed pixels of a remotely sensed image.
OriginalsprogUdefineret/Ukendt
TidsskriftFuzzy Sets and Systems
Vol/bind137
Udgave nummer2
Sider (fra-til)191-213
Antal sider23
ISSN0165-0114
StatusUdgivet - 2003
Udgivet eksterntJa

Citationsformater