A shorter proof that palindromes are not a Church-Rosser language, with extensions to almost confluent and preperfect Thue systems

Colm Ó Dúnlaing, Natalie Schluter

Publikation: Artikel i tidsskrift og konference artikel i tidsskriftTidsskriftartikelForskningpeer review

Abstract

In 2002, Jurdziński and Loryś settled a long-standing conjecture that palindromes are not a Church–Rosser language. Their proof involved a difficult analysis of computation graphs associated with 2-pushdown-stack automata. We present a shorter and easier proof in terms of 1-tape Turing machines.We also discuss how the proof generalises to almost-confluent Thue systems and the differing powers of Church–Rosser, almost-confluent, and preperfect Thue systems in relation to palindromes.
OriginalsprogEngelsk
TidsskriftTheoretical Computer Science
Vol/bind411
Sider (fra-til)677-690
Antal sider14
ISSN0304-3975
StatusUdgivet - 2010
Udgivet eksterntJa

Emneord

  • Palindromes
  • Church–Rosser Language
  • Jurdziński and Loryś
  • Computation Graphs

Fingeraftryk

Dyk ned i forskningsemnerne om 'A shorter proof that palindromes are not a Church-Rosser language, with extensions to almost confluent and preperfect Thue systems'. Sammen danner de et unikt fingeraftryk.

Citationsformater