Projektdetaljer

Beskrivelse

The goal of this project is to improve the role of demographic meta-data in machine learning benchmarks, focused on computer-aided diagnosis. In clinical settings, meta-data such as age of sex of patient are crucial to the diagnosis of that patients. However, when developing machine learning algorithms for diagnosis, such meta-data is often not taken into account. In fact, our preliminary study shows that 90% of diagnostic algorithms at a recent conference, do not mention such information, in part because medical image data for machine learning do not include meta-data. This can lead to (i) poor and/or biased algorithm predictions, and (ii) underexplored research questions. Addressing the missing meta-data problem is therefore crucial for responsible translation of diagnostic algorithms to real-life settings. This project will consist of a systematic review of the use of meta-data in computer-aided diagnosis benchmark, and investigate how to best include such meta-data when training algorithms.
AkronymMMC
StatusAfsluttet
Effektiv start/slut dato01/10/202230/09/2025

Finansiering

  • Danmarks Frie Forskningsfond: 2.879.780,00 kr.

Fingerprint

Udforsk forskningsemnerne, som dette projekt berører. Disse etiketter er oprettet på grundlag af de underliggende bevillinger/legater. Sammen danner de et unikt fingerprint.
  • Augmenting Chest X-ray Datasets with Non-Expert Annotations

    Cheplygina, V., Damgaard, C., Eriksen, T. N., Juodelyte, D. & Jiménez-Sánchez, A., 17 jul. 2025, Medical Image Understanding and Analysis. Springer, s. 133-144 11 s. (Lecture Notes in Computer Science, Bind 15916).

    Publikation: Konference artikel i Proceeding eller bog/rapport kapitelKonferencebidrag i proceedingsForskningpeer review

  • In the Picture: Medical Imaging Datasets, Artifacts, and their Living Review

    Jiménez-Sánchez, A., Avlona, N.-R., de Boer, S., Campello, V. M., Feragen, A., Ferrante, E., Ganz, M., Gichoya, J. W., Gonzalez, C., Groefsema, S., Hering, A., Hulman, A., Joskowicz, L., Juodelyte, D., Kandemir, M., Kooi, T., Lérida, J. D. P., Li, L. Y., Pacheco, A. & Rädsch, T. & 9 flere, Reyes, M., Sourget, T., van Ginneken, B., Wen, D., Weng, N., Xu, J. J., Zajaç, H. D., Zuluaga, M. A. & Cheplygina, V., 23 jun. 2025, FAccT '25: Proceedings of the 2025 ACM Conference on Fairness, Accountability, and Transparency. New York: Association for Computing Machinery, s. 511-531 20 s.

    Publikation: Konference artikel i Proceeding eller bog/rapport kapitelKonferencebidrag i proceedingsForskningpeer review

    Åben adgang
  • Copycats: the many lives of a publicly available medical imaging dataset

    Jiménez Sánchez, A., Avlona, N.-R., Juodelyte, D., Sourget, T., Vang-Larsen, C., Rogers, A., Zajac, H. D. & Cheplygina, V., 26 sep. 2024, Advances in Neural Information Processing Systems 38 (NeurIPS 2024) : Datasets and Benchmarks Track. 2024 udg. Bind NeurIPS. 22 s.

    Publikation: Konference artikel i Proceeding eller bog/rapport kapitelKonferencebidrag i proceedingsForskningpeer review

    Åben adgang